
THE CHALLENGE OF
SOFTWARE DEVELOPMENT FOR SCIENCE

Félix Bertoni

14.11.2020

ABSTRACT

Transparency note: this paper serves both as an
informative medium and as a way to inform about
and promote my Software Development for Scientists
course and related teaching services. The course
book and other materials are published as free access
resources and are sufficient for autonomous learning.
Only my teaching services, as course supervision,
are possibly paid, and are for entities wanting to
get support for their members to learn software
development and/or to support my course writing
work. More on all that in section 6

Software development can take significant space in a
scientist’s life, would it be to display data, perform
simulations or calculations, or even to develop tools
for other scientists. Unfortunately, not all scientists
had the chance to be taught software development
basics, the time to explore this wide and unfriendly
field of knowledge by themselves, nor consciousness
of the underlying challenge of developing software for
science.
In scientific field, software tools have requirements
and constraints quite different from others, to ensure
precision of computing and reproducibility of results.
This white paper is meant to raise awareness of
scientists on objectives they may want to achieve
when developing software, and to give them bribes
of solutions to approach them. It only gives sparse
advice that I consider to be both extremely beneficial
and not intuitive or unlikely to be encountered in
autonomous learning. In order to keep this paper
short, deep explanations and discussions about cer-
tain advice were skipped, which can make them a bit
hard for complete beginners to understand. Reading
through this document should be still beneficial even
for complete beginner, especially sections 1, 5 and
the start of 6.

ABOUT DOCUMENT

Keywords: Software development, reliability, repro-
ducibility, course

Est. reading time: 20min — 40min

Type, version: white paper, 1.0

Date: 14.11.2020 (generated: 11.01.2021)

Author: Félix Bertoni, contact@felix-bertoni.fr

Sources: https://gitlab.com/feloxyde/courses

License: CC BY-SA

CONTENTS

1 Efficiency 2
1.1 Editor 2
1.2 Automation 2
1.3 Version Control 3

2 Readability 4
2.1 Coherence 4
2.2 Expressiveness 4

3 Maintainability 5
3.1 Decoupling 5
3.2 Polymorphism 6

4 Reliability 7
4.1 Anatomy of a test 7
4.2 Testing levels 7
4.3 Test reliability 8
4.4 Test Driven Development 8

5 Learning software development 9
5.1 Skills portability 9
5.2 Do it ! 9
5.3 Small focused steps 9
5.4 Finding knowledge 9

6 My course and services 10
6.1 Course 10
6.2 My services 10

1

mailto:contact@felix-bertoni.fr
https://gitlab.com/feloxyde/courses

EFFICIENCY

The goal of nearly any software is to help its user
to perform a task with ease. That’s efficiency. Why
would one spend hours to trace a curve with 1 000
data points while a software could do the same in
seconds for 1 000 000, more accurately and reliably ?

Efficiency prevents frustration: no effort was
wasted if no effort was put in failed task at first. If
you need 1 key press and 10 seconds of waiting for
plotting 1 000 000 data points, you not feel bad if
your data appear to be erroneous: just correct it and
re plot.

Software development is extremely frustrating,
because it involves a lot of trivial, repetitive and
attention demanding tasks, as compiling, testing, or
collaborative work synchronization. Therefore, being
efficient is also important when developing software.
Fortunately, there are plenty of tools to get these
tasks from painful and long to easy, fluid and quick.

Please note that advice presented here are also
applicable to any text-based work, as for example
LaTeX document editing.

EDITOR

Source code editor, as VSCode, Vim, or Emacs, are
software to... well... edit source code. This may
seem really simplistic said like that, but most of them
pack a ton of features to help developers code with
ease.

Syntax highlighting displays words in different
colors and font to ease code reading.

Autocompletion tries to predict what one in-
tend to write when typing, and proposes completion
or corrections.

Code snippets are a wider autocompletion feature,
able to automatically write entire blocks of code.
They usually require a bit of setup to be used.

Block collapsing hides blocks of code under a
one-line summary, making wide or complex docu-
ments easier to read and navigate.

Refactoring allows quick and generalized changes
in the code. In most editor it takes the form of a
find and replace tool, however advanced refactoring
features can take language’s syntax in account and
work on thousands of files at once.

Code navigation enables quick navigation through
the code, for example to find all uses of a component.

When working, keyboard shortcuts are not to
be neglected. Try to force yourself configuring and
using them for tasks you perform often.
Finally, editors are highly customizable, often through
the use of extensions, and if a feature is not in it
from start, it is likely implemented as a plugin. Some
can even interface themselves with tools presented in
the rest of this section.

AUTOMATION

In software development, most tasks can be partially
or fully automated. It includes testing, building the
software, and creating documentation. Automation is
a keystone in software development, making it much
more simple and pleasant, by turning time or atten-
tion consuming tasks into simple and reliable ones.
Ideally, every possible set of task you need can be trig-
gered using a single command or action, as make test.

Scripting tools, as Bash, Expect, or Python,
are convenient for easy or unusual task automation,
as for example manipulating files.

Build automation tools, as Make or Meson,
allow defining a hierarchy of actions to perform,
some dependent from others, and execute them
in the right order when needed. While they are
intended for building software, they are extremely
powerful tools, for both software development and
other projects, as writing LaTeX document. Some of
them, as CMake, are specialized for a programming
language or family of languages.

Analyzers are automatic software that analyze
your code either by reading it or running it, and
give you all kinds of reports. For example, a linter
will give you report on structure and style of your
code, while tools like Valgrind can spot memory
management errors. Analyzers are usually bound to
a specific language, but are fairly easy to use.

Debuggers allow you to run your code step by
step, and observe what happens inside, or even
modify state of the program on the fly. They are
really convenient to understand and fix bugs, as their
names imply. They are unfriendly at first, because
they have simplistic, often command-line, interfaces.
However, learning about ones corresponding to your
main languages will prove to be a great help along
all your projects.

There exists automatic or nearly automatic tools
for any software development task. Some are fairly
difficult to set up, while others are trivial. If a task
is performed often in the project, it is wise to look
for a tool and automate it if possible, and if such
tool exists, to take time to set it up or rearrange an
existing setup.

2

VERSION CONTROL

Version control software, as Git, or SVN, are the
most important tools in software development. They
maintain a history of changes happening in the
software, and make difficult operations, illustrated
figure 1, nearly trivial.

Zero loss: always keep a trace of what hap-
pened in the code in history.

Commit: take a snapshot of your project and
save it in history.

Revert: come back to an older version (com-
mit) of the code.

Branch: create two parallel histories. Extremely
convenient for teamwork or experimental versions.

Merge: bring two parallel histories together.
Extremely convenient for teamwork. Changes intro-
duced in one history are applied to the other.

Conflict resolution: If a merge operation re-
sults in incoherent changes, version control software
precisely points them out to help to get back into a
coherent state.

Version control acts as a backbone for both
programming and project management, as well as
a code sharing medium. They can be used for
much more than software development, as LaTeX
document writing, art, or design. Version control
tools all work quite similarly, so when you know one,
you know roughly all of them. As they are simple
to set up, and consume close to no resources, while
acting as a safety net for the project, using one is
mandatory for any software development project.

Figure 1: Version control workflow (git)

3

READABILITY

One of the key difference in science software versus
other software is that science requires criticism and
reproducibility. In general software development,
readability of the code is simply a mean of achieving
other points, as maintainability. In science, it can be
considered as a requirement by its own.

Readability is part of a larger matter, code quality.
In this section, we discuss practices that can enhance
both code quality and readability. Please keep in
mind that readability and code quality have subjective
parts. Also, we need to think about human readers,
but also about software that will parse your code, as
interpreter, compiler or analyzers.

COHERENCE

Exactly like for a natural language or dialect, humans
get used to the code they read. In that reason we
want our code to be coherent: whatever choices
we make regarding our code, we want them to be
applied to our entire project. This way, readers of
our code will have to learn only once how to read our
code, and get used continuously to it through their
reading.

Your programming language probably has offi-
cial guidelines regarding code presentation, and
possibly software design. If so, it is wise to apply
them, at least partially, so anybody used to the
language will also be used to your code’s look. Keep
in mind that not only your close colleagues will read
your code: other researchers will, and maybe people
from help forums.

In case no guideline exists, or they are insufficient,
just create some, for yourself or your institution,
write them somewhere and apply them. Software as
linters and formatters can assist us in enforcing a set
of rules in our code.

EXPRESSIVENESS

Formulate your code to express what you intend to
do rather than how you do it. Ideally, your intent is
expressed only through syntax and semantics of the
language you use, in order to allow software as com-
piler to understand it as well. For example, one can
use different types for different roles.

Listing 1: C++ intent through types

class Person {

/*... defining a student */

};

class Wall {

/*... defining a wall */

}

void paint(Wall w){

/*... how we paint a wall */

}

void hug(Person p){

/*... how we hug a person */

// labWall is a variable of type Wall

Wall labWall = Wall();

pain(labWall); //OK

hug(labWall); //NOPE , compiler will

↪→ complain

}

In the previous listing, we defined two types, Wall and
Person, and corresponding operations, respectively
paint and hug. If we try to hug a wall, the compiler
will raise an error: through types we have defined, it
understood that it isn’t logical to intend to hug a wall

Unfortunately, it is not always possible to ex-
press everything we want in a way the compiler
can understand it. In that case we can use names,
as for example variable names, as a complement
of syntactical expression. Name functions, types,
classes in regard of what they are, and variables in
regard of what they are used for.

Listing 2: C++ intent through naming

class Wall {

/*... defining a wall */

}

//here , our wall is used as a lab wall

Wall labWall = Wall();

//here , our wall is used as decoration

Wall decoration = Wall();

//(note: compiler is OK with that)

We can see that compiler will not complain about
using a wall as a decoration, even if it is quite dis-
cussable. However, for a human reader, it will maybe
look a bit strange and trigger thinking regarding the
correctness of the code.

When naming is also insufficient, for example if
some context or an overview of software structure is
needed, a comment can make code clearer.

Listing 3: C++ intent through comments

//that’s ok for modern art !

Wall decoration = Wall();

Comments are to be used wisely, as too many com-
ments can obfuscate code rather than clarifying it.
The general rule is: do not use comments if you can
express things with either syntax or naming.

4

MAINTAINABILITY

Maintainability of a software pictures how easy and
safe it is to introduce changes in its behavior or code.
Such changes can happen for various reasons.

• Fix a bug

• Adapt software to new environment, for example
enable scaling on a supercomputer, or supporting
new libraries.

• Add or change functionalities of the software.
For example, allow an image analysis software
to process video.

• Change misleading code structures, as a mis-
named function.

Ease of introducing a change is how much code we
need to write or rewrite to actually implement the
change. Safety of such change is related to how
many bugs may create while doing so.

Readability and testing are important for main-
tainability, but its foundation lies in how the software
is structured and organized, software architec-
ture. Let’s see some architecture principles for
maintainability.

DECOUPLING

The rule of thumb in software architecture is to ex-
press components, as classes or functions, as isolated

elements independent of each other and coordinated
through minimal interfaces. Two components are
independent if none needs to know how the other
works for them to work together. That practice is
called decoupling.

Let’s imagine we want to write a program computing
the average of a list of integers. It will be made
of three components, average function computing
average, list type, and integer types.
To achieve decoupling, we will first focus on how we
want to manipulate components rather than focusing
on what they are. This will allow us to define
required interfaces for our components to interact
with each other.
Computing average of a set of integer requires to add
them together and divide their sum by an integer.
These two operations, add and integer_divide, define
our Value interface.
Computing average of a list of values requires to
access each element of the list, sequentially. This
can be done through a next_element operation. It will
define our Collection interface.
Now, when defining our average function, avg, we
will work on a collection of values instead of a list
of integers. Finally, when implementing List and
Integer types, we will ensure they support operations
defined in Collection and Value respectively, for them
to be compatible with avg function, as shown figure 2.

Means of interface definition depend on the
programming language used. As for example, in
Java, programmer can explicitly declare interfaces,

Figure 2: Example of decoupling

5

and then components have to explicitly implement it.

Listing 4: Java interface declaration

/* declaration of Collection */

interface Collection {

element next();

}

/* implementation */

class List implements Collection {

element next() {

/* some code here */

}

}

The opposite example of Java interfaces would be
Python ducktyping. Ducktyping is an implicit way of
declaring an interface. Interfaces are never declared,
and as long as a component has all required oper-
ations for a manipulation, it is compatible with this
manipulation.

Listing 5: Python ducktyping implicit interface

class Integer:

def add(other):

#some code here

def divide(other):

#some code here

def sub(other):

#some code here

#here , Integer implicitely

#implements interface "Value"

#from our previous examples:

#it has add and divide operations

Implicit interface declaration offers more flexibility,
while explicit interface declaration is much clearer.

POLYMORPHISM

Decoupling synergize extremely well with another fea-
ture of most major languages: polymorphism. Poly-
morphism allows manipulating component of differ-
ent types with their respective operations, given they
share a common interface. Here is a quick Python
example. First, let’s define two different types with a
common interface.

Listing 6: Python polymorphism example

#defining two different types of components

class A:

def scream(self):

#printing AAAA on terminal

print("AAAA")

class B:

def scream(self):

print("BBBB")

#they share a common , implicit

#interface , which is the scream operation

Then, we create a list of mixed components from both
types, and, for each element of the list, we call the
scream operation.

Listing 7: Python polymorphism example

#thats a list: A, B, B, A (it rocks)

lst = [A(), B(), B(), A()]

#making all elements scream

for element in lst:

element.scream ()

The output we can expect from executing this script
is as follows:

AAAA

BBBB

BBBB

AAAA

We can see that operation corresponding to the type
is used each time: A elements print AAAA, while B

elements print BBBB.

Polymorphism can take various forms, happen-
ing either at compile time or at runtime. We can cite
operation overloading, genericity, and method over-
riding, as being commonly used ones. Polymorphism,
in synergy with decoupling, allows writing extremely
flexible and extensible software with relatively small
efforts.

6

RELIABILITY

Science needs reliable data and thus reliable software
to process it. Ensuring a software is reliable is a
complex matter. Having a clean software, from both
code and structural point of view, is a big help. But
at some point one has to test the software.

Testing is beneficial in every aspect of software
development, and is ideally automated using testing
frameworks, automation tools, testing software, or a
combination of those. In the initial development of
a feature, tests ensure that the feature is correctly
implemented. In the rest of the lifetime of the
software, those tests will ensure the feature has
not been broken. Being able to verify if software is
still properly working after some changes increases
maintainability.

Testing may feel like a hassle. If it does, it in-
dicates a deeper problem: tests are not automated
enough. The simpler tests are to run, the more
often they will be run, and the more developers are
encouraged to write more tests.

ANATOMY OF A TEST

A test has three main elements, that can be specified
with more or less flexibility.

Context is everything that is not part of the
target, software or component, of the test. It can be
another software, a server on a distant machine, a
configuration file...

Precondition is the state in which the target
shall be before starting the test. For example, in
order to test a save file functionality, the precondition
would be that a file is already loaded in the software.

Execution and verification describes manipu-
lations of the target and what is their expected
results. That is the actual verification of the test,
and it can focus either on output of the target or its
state after manipulations.

As in a scientific experiment, when testing soft-
ware we usually want our test environment to be
controlled. For example, if we test a webpage
communicating with a server, we want our test to
fail only if the webpage fails, and not if the server
fails. Regarding this concern, we try to replace
everything that have a fair amount of chances to fail
by test doubles. In the case of our webpage, a server
test double would not do any computing and only
send predetermined answers, reducing the risk of
failure due to its simplicity. Test doubles can be used
as probes to verify that the target had the correct

behavior, in this case, they are called mocks.

Writing tests is time-consuming. Context and
preconditions are often shared, partially or fully,
between several tests. It is convenient to turn them
into reusable elements, known as fixtures.

TESTING LEVELS

To test a software, one can have different approaches,
or levels. Or a combination of them.

System testing handles the software as a whole,
caring only about end functionalities and not about
implementation. It is usually quite hard to automate.
It answers the question Is my software properly work-
ing ? It is convenient to track errors at a macro scale.

Unit testing breaks down software into as small as
possible component, units, as functions and classes,
and test them in isolation by extensively relying on
test doubles and mocks. It answers the question
is this component properly implemented ? Unit
testing allow fine granularity bug detection and faster
debugging. It is mandatory for complicated or widely
used components, but can be time-consuming if test
doubles and mocks are necessary. Decoupling eases
unit testing.

Integration testing tests sets of components
together. It acts as an in-between for unit and
system testing. It answers the question Are these
components compatible ?. Integration testing checks
that components required and matching interfaces
are coherent. Also, integration testing can act as
unit testing in case all but one component have been
extensively unit tested and therefore serves as mocks.

It is often hard to mock interactions between a
software and its environment, inputs and outputs,
as for example user key press. To mitigate this
problem, it is advised to decouple as much as
possible environmental code with inner logic code.

Listing 8: Decoupling print in Python

#creating a console IO class that can be

↪→ mocked if needed

#it simply wraps code

class UserInterface:

def send_output(message):

print(message)

def get_input(message):

return input(message)

#example of a function using it

#that can receive a mock instead

def hello_world(ui):

ui.send_output("hello world !")

#using it with concrete component

hello_world(UserInterface ())

#or mock (defined elsewhere)

hello_world(MockUI ())

7

TEST RELIABILITY

Tests need to be as reliable as possible, as we want to
trust them when evaluating quality of our software.
We first want to keep tests as simple and straightfor-
ward as possible. For example, use plain values for
expected result instead of computing them. Using a
testing library or framework helps since it provides
battle-tested test functions and constructs.

We also want to ensure our code is covered by
tests as much as possible, so every line of our
software is run during tests execution. It is done
by coverage report tools, that are fairly easy to use
and setup. Coverage does not point out whether our
tests are good or not, but warns about what has not
been tested for sure.

Finally, a failing test is better than no test at
all. If you do not have time to implement tests for
components, but you know you need to in the future,
it could be wise to create empty, always failing tests
to remember that you need to test this particular
aspect.

TEST DRIVEN DEVELOPMENT

Writing tests is a critical activity in software develop-
ment, especially for science. You may be tempted to
skip it to save time if the program feels functional,
exposing yourself and colleagues to latter, vicious
failures of your software. To prevent this situation to
happen, developers can either rely on self-discipline
and rigor, or they can use a development method
favoring testing, as Test Driven Development.

The idea behind TDD is write tests for some-
thing before coding it. TDD works with tiny
successive iterations, each implementing part of a

functionality. An iteration, summarized figure 3, is
conducted as follows.

1. Write a really simple and tiny test, usually a unit
test, for a functionality or part of a functionality.

2. Check that test is failing. Compilation failure is
considered as failure. If test pass, rewrite it so it
does not pass.

3. Write just enough code to have the test passing.

4. Check that all tests written up to know pass, oth-
erwise not correct the software or update tests.
Check that code quality is sufficient, otherwise
refactor code that needs to be. Once all tests
are passing and code quality is satisfying, move
onto the next iteration.

Such practice encourages decoupling and ensures
you do not write untested code. However, it can be
difficult to apply in certain situations. For example,
when writing code directly tied to inputs and outputs
of the software, writing tests can be complicated and
time-costly, making TDD slow or counterproductive.

Keep in mind that Test Driven Development,
as any software development method, is open to
adaptation to your specific needs and combination
with other methods. For example, one may want
to write more than one tiny test per iteration.
Purpose of a development method is to increase work
efficiency, and, indirectly, software quality. In regard
of this objective, whatever method you choose, it is
important to regularly evaluate whether the method
is fit to your case or not, and change it if need be.

Figure 3: Test Driven Development overview

8

LEARNING SOFTWARE
DEVELOPMENT

Elements presented before in this document are briefs
selection and summary from all concerns, good prac-
tices and tools one shall have in order to produce
high quality software with low efforts. Therefore, a
lot is left for readers to learn, either by themselves or
through taking courses. Regarding this matter, this
section tries to give some directions on how to effi-
ciently learn software development knowledge.

SKILLS PORTABILITY

In software development field, all tools or practices
for a certain purpose tend to be very similar. Which
means, once you’ve learned one from a category,
learning others will be extremely easy. It also applies
to programming languages. Once you know a
programming language, most other languages will be
trivial for you to learn.

Additionally, some tools and practices, as au-
tomation tools and version control, can be used
outside of software development field.

Do not be afraid to spend a bit of time learn-
ing new tools when you wonder if you need them: it
is rarely wasted time.

DO IT !

A lot of programming tools are language-based. Of
course, programming languages are included in this
category, but also CMake, Make, and any command
line or config-file based tool.

In a graphical interface tool, as most public-oriented
software, available actions are usually suggested to
you through visual display, for example in a menu.
This is convenient when you do not exactly know
what you want to do or how you want to do it:
menus serve as a quick and tiny documentation.
With language-based tool, it is the opposite: if you
ignore how to do things, you will have to search and
read external documentation on the syntax. On the
other hand, if you know well the language of the
tool, you will be extremely efficient when using it.

Efficiently using a language-based tool requires
more practice than for a graphical tool, in order for
you to become fluent in the language, enabling you
to focus on what the tool should do and not how
to tell it to. Also, struggling a bit with the syntax
when learning a new syntax is perfectly normal.
When following a tutorial or course, it is advised to
reproduce all demonstrated manipulations to get a

fair amount of practice.

SMALL FOCUSED STEPS

From language comes a lot of abstraction, and nearly
everything in a software is represented using sole
text, the source code. While it enables extremely
efficient factorization and constructs, as mathematics
do, it can also be difficult to manage for humans as
we do not see directly the result of what we are doing.

To minimize this, one can do two things. First, split
your project in small step. Each steps starts with
a functional version of the software and ends with
another functional version. Second, try to have your
steps to be as specialized as possible. For example,
if you want to improve automation in your projects,
take steps with only automation improvement and
no development in it.

It applies to both development and learning,
since we often learn on the fly, by experimenting on
a project.

FINDING KNOWLEDGE

Software development is not science-bound1, and it
is likely that you will acquire relevant knowledge on
the Internet instead of through papers, and most
information to be found are not sourced, and even
less with scientific sources.

A lot of tools have official tutorials and docu-
mentation associated. These are to be prioritized
when learning or solving issues, since they have the
highest chance to be reliable and accurate.

When no documentation is available, or if it is
insufficient, rest of Internet or books are also fairly
good sources. Beware, there are a lot of inaccurate
or context-tied information out there, think with crit-
icism, especially before taking important decisions.
In regard of this matter, you can always submit your
doubts on a help forum and specify you want sourced
answers.

While finding technical knowledge is fairly sim-
ple, complete software development courses are
rare on the internet, and learning will often pass by
following sparse tutorials. Regarding this issue, I
wrote a software development course, presented in
next section, providing most of the basic knowledge
that a scientist could need to develop software.

1Well, it is, but not enough to fit my taste

9

MY COURSE AND
SERVICES

COURSE

As mentioned in the previous section, I’m offering a
software development course targeted at scientists,
Software Development for Scientists. The course
book and other materials are free to access at my
website2.

The book is designed to be sufficient for au-
tonomous learning, with incremental examples to
drive explanations, and covers various software
development skills a scientist may want to learn. It
also mentions numerous advanced notions to help
reader find more specialized knowledge. Here is a
quick overview of the course content.

Development environment explores tools used
by software developers, providing basic knowledge
in some of them, as well as development methods
basics and concerns when distributing a software.

Programming presents basic and medium con-
cepts used in programming, including variables,
types, functions and classes. It also shows basics of
software architecture and performance concerns. It
is driven by a large example.

Code quality discusses practices to make code
easier to read and write in the form of guidelines and
tools to enforce them.

Testing shows principles to efficiently test a
software, including Test Driven Development method
and a wide example based on the one of Program-
ming chapter.

2https://courses.felix-bertoni.fr/0423.html

Currently, the course uses Python as main lan-
guage and shows small pieces of C++ to compares.
In a later version, C++ will be used as main
language.

MY SERVICES

Some people may find easier to learn if they have
supervision or support when learning. Even if my
course materials are designed to be self-sufficient for
autonomous learning, I can provide teaching services.
Such services are mostly targeted at institutions as
laboratories, but are also available for individuals,
and can take various forms, including but not limited
to those listed below.

Lecturing and supervision deliver the course
traditionally, with presentations and practical work. I
try to make lectures as entertaining as possible.

Support makes me available for student to an-
swer questions and help them in case they encounter
problem in their autonomous learning adventure.

Specific editing is for you if you require not
already planned modifications regarding an existing
course, as addition of examples closer to your
domain. It also applies if you want me to write a
new, not already planned, course.

Prices are to be negotiated for each case specifically,
as I try to keep them fair. It ranges from 25 to 60
euros per required hour of work, which includes exe-
cution of the service as well as eventual preparation.
For example, an hour of lecture is to be considered
as around five hours of work. Any material resulting
from an order, as books, slides and examples, are
published under free culture licenses, as Creative
Commons or GPL.

Finally, ordering a service supports me in my
work to provide free to access learning materials.
Feel free to contact me if you are interested in either
my course, my work in general, or my services.

10

https://courses.felix-bertoni.fr/0423.html

	Efficiency
	Editor
	Automation
	Version Control

	Readability
	Coherence
	Expressiveness

	Maintainability
	Decoupling
	Polymorphism

	Reliability
	Anatomy of a test
	Testing levels
	Test reliability
	Test Driven Development

	Learning software development
	Skills portability
	Do it !
	Small focused steps
	Finding knowledge

	My course and services
	Course
	My services

